从产品、商业模式、渠道建设等多个方面围绕细分市场进行设计

 

目前仪器市场发展存在的主要问题有:仪器产品概念含糊不清、解决方案与产业链整体发展不配套、产品创新意识薄弱等。整体来看,市场的发展任重道远,还需要仪器行业的各方充分做好自己的本职工作。

从仪器企业的角度来讲,仪器市场需要充分关注产品的落地性,研发出真正的能够让用户想买,好用的产品。产品好坏的衡量标准,即必须具备三个特性:质量、粘性和用户适用性。其中,产品的适用性用户为主体,十分看重用户体验。

虽然仪器行业发展很快,但是市场上的竞争还处于同质化的竞争,各家的解决方案还不够成熟和不够完善。仪器企业需关注特定用户群、长期持续的发挥创新能力,从产品、商业模式、渠道建设等多个方面围绕细分市场进行设计。

    技术部严把质量关,始终把产品安全放在第一位,确保每一台仪器都拥有最高的安全性和使用性,为报效国家,为国家十二五科研行业做出贡献,大力开展国内 科研领域的先进设备的研发进度。推出多个远超国际先进技术水平的仪器和设备。解决了一个个科研技术难题。加快了国内多个产品研发进度,提高了产品的国际竞争力。 

对其标温度进行优化

乙酸乙酯化工生产由反应釜、中和釜、精馏塔和筛板塔四个工段组成,反应釜工段主要完成酯化反应获得初级产品,在酯化反应过程中,起主要作用的因素是反应釜内部的温度,它的稳定与否直接影响反应产品的产量与质量,为此,本文以反应釜为对象,对其标温度进行优化,研制智能控制策略及应用,对稳定生产,提高产品质量具有现实意义。
在流程工业生产过程中,温度是一个普遍且重要的物理参数。为了使生产能够高效高质进行必须对生产过程中的主要参数,譬如温度、压力、流量等进行有效地检测和控制,因此针对不同要求,可以形成控制参数不同的控制系统及相应控制方案,而其中温度控制系统占有极大的比例。研究设计温度控制系统的主要工作体现在控温和测量温度两方面,测量温度主要需要用到各式各样的仪器仪表,这方便的技术已经较为成熟,而研究温度的控制还处于一个不断发展完善的阶段。随着控制体系愈加复杂化,及控制算法的不断研究,如何更好的满足系统的性能要求已成为科学探索领域的一个重要课题。

所以说解析式方程完全可以用于很多含近临界区流体的化工及相关的生物、环境、能源、材料、天然资源和食品领域的过程设计和软件开发

SLM645微型反应器的应于领域方向
SLM645微型反应器,是与清华化工系合作开发出一款主要用于化工热力学与分离工程的研究领域微型反应器,具体技术目前限于只供清华化工系,同类反应釜还未有推出市场
SLM645微型反应器属于小型高压反应釜的范畴,主要应用于:超临界萃取、超临界流体色谱、超临界流体中的合成和反应、超临界流体中的材料加工以及超临界微乳液反应和分离等过程。关于表达流体性质的主要方法状态方程已有百年历史,但仍然有一些重要问题没有很好地解决。其中一个问题就是临界点附近的流体性质的计算,特别是采用解析式状态方程更是难题。我们在统计力学和分子热力学的基础上,充分考虑分子的结构形状(包括体积、链节和非球形度)和分子间相互作用(包括色散和偶极相互作用),建立的实用的解析式状态方程:跨临界点的统计缔合流体理论(简称为SAFT-CP),用于计算包括临界点在内的全局范围内的流体PVT、相平衡、密度以及比热和汽化热等热力学性质。可以应用的流体已经包括各种小分子如二氧化碳等、非极性流体如烷烃烯烃等、极性流体如酮醚等、含氢键的流体如水和醇等、以及各种混合物。热力学性质的计算结果和临界因子的计算结果表明:直到距临界点只有几摄氏度的附近,解析式方程都可以很好地表达流体的性质。而实际过程在临界点附近几摄氏度内进行操作的机会很小,所以说解析式方程完全可以用于很多含近临界区流体的化工及相关的生物、环境、能源、材料、天然资源和食品领域的过程设计和软件开发,如超临界萃取、超临界流体色谱、超临界流体中的合成和反应、超临界流体中的材料加工以及超临界微乳液反应和分离等过程。

 SLM645微型反应器与多相微尺度分离工程的热力学研究
多相微尺度分离工程广泛应用于化工及相关的生物、环境、能源和材料有关的过程中。这些体系包括多相微分散,微乳液,胶体体系等。建立有扎实理论基础、计算过程简单的多相微尺度分离体系的热力学计算方法是非常有用的。以实验研究为基础,以分子模拟为补充,以统计力学理论为手段,研究多相微尺度体系体系相平衡、界表面性质、纳微结构性质,研究多相微尺度结构的时空变化特性,以及不同的外界因素对于纳微结构的影响等,建立可靠的预测复杂体系纳微结构性质及界表面性质的理论模型。 
SLM645微型反应器与其它分离工程热力学 
在很多分离工程中,精确的热力学计算都是过程开发、设计和运行控制的重要依据,也是相关过程的软件开发的基础。研究涉及的过程包括:金属溶剂萃取、一般有机物分离如芳烃抽提和二甲醚分离、共沸物的萃取及精馏分离、各种工业气体中的酸性气体处理(H2S/CO2)、离子液体在分离中的应用、以及逆流色谱分离天然物质及生物分子等。
铸就反应釜主流影响力,实验反应釜,平行高压反应器,PC电脑高压反应釜,升降高压反应

而且能够通过U盘对反应釜的实验数据采集和处理

全自动微型反应釜“助力经济结构快速转型的催化科技”

 

  全自动微型反应釜“助力经济结构快速转型的催化科技”

近年,微型高压反应釜,随着催化学术在催化科学与技术领域基础研究和应用研究方面的最新进展和成果,深入探讨催化领域所面临的机遇、挑战及未来发展方向,促进相互了解与合作,促进我国催化科学和技术的发展。助力科技创新 催化经济增长新动力。


  全自动高压反应釜发明专利号为:ZL201410032160.4
1.微型全自动反应釜用途:本设备可配备自动进料泵,可定量定时向全自动高压反应器注入反应介质。自动进料全自动高压反应釜 用于各种气液、气固、液固等物质在一定的压力、 温度等条件下的反应,在此过程中对 压力、温度、转速等数据参数进行采集,并通过计算机或仪表进行处理。广泛用于石油化工、 化学、制药、高分子合成、冶金、环保、造纸等领域,如催化加氢反应、聚合反应、多项催化、 湿法冶金、酯化反应、超临界反应等。
2. 微型全自动反应釜质量保证:反应釜体、釜头、阀门的材质应采用相同材质,为提高耐腐蚀能力,应采用不锈钢316L;为避免焊接腐蚀、保证受压均匀,釜体、釜头应采用整体锻件材料切割工艺,保证釜头、釜体无任何焊接点;
3.微型全自动高压反应釜技术指标: 
3.1 微型全自动反应釜主要是能适于各种气液、气固、液固等物质在一定的压力、温度变化等条件下的处理材料的仪器; 
3.2 台式,固定头反应釜; 
3.3 有效容积:100毫升; 
3.4 最高使用压力、温度:3000 psi ,350°C ;
3.5 磁力驱动搅拌器,带轴和搅拌桨,转速:0~1200转/分钟可调,标准扭矩2.5英寸-磅(28Ncm); 
3.6 微型全自动高压反应釜搅拌驱动马达:80W,无级调速; 
3.7 PTFE的密封垫片,开环式密封结构(非法兰螺栓式密封),提高了釜的安全性和操作方便性; 
3.8釜头标准配置,包括:压力表、液体采样阀、气体进样阀、气体出样阀、探底管、热电偶、安全防爆膜、磁力驱动搅拌器、搅拌桨; 
3.9 针对不同的应用,不同的反应体系,可以选择各种不同的材质。如不锈钢316L、钛合金、锆合金、哈氏合金、莫耐尔合金400、碳钢等;
3.10 新型MRSC-AUTOCHEM程序控温控制器,提供各种参数的数字显示。如转速、压力、搅拌电机电压输出等,并提供高温切断、高压切断(切断点均可人为设置)等功能;用户不仅可以在控制器面板上对反应釜进行操作,而且能够通过U盘对反应釜的实验数据采集和处理。
3.11 加热方式:电加热(标准方式)、油浴控温、铝块加热; 
3.12 所有的阀门均采用高压反应釜专业用高温高压阀门,保证具有良好的互换性; 
3.13 可根据用户要求进行反应釜设计及系统集成; 
3.14 可根据用户要求提供反应体系配套设备,如气体增压泵、质量流量计、高压液体进样泵等。 
4、材质:台式反应釜,固定头,不锈钢材质,100毫升;
5、微型全自动高压反应釜系统包括:a.台式,固定头反应釜,容积:100ml;c. 釜盖、釜体材质、内部构件均为:316L不锈钢材质;d. 磁力搅拌器,材质:不锈钢316L,316L不锈钢材质;e. PTFE的密封垫片, 开环式密封结构 ;f. 使用极限压力、温度:3000psi,350℃;g. 釜盖配有:1. 压力表和安全防爆膜;2.温度热电偶(316L);3.液体采样阀(316L)和气体进样阀(316L),与探底管相连(316L);4.气体释放阀(316L);5. 磁力驱动搅拌器,带轴和搅拌桨,无级调速,316L不锈钢材质;h.搅拌驱动马达, 80w, 无级调速, ,0-1200转/分钟;i. 搅拌转速控制和PID程序温控器;j. 加热炉 

再查阅设备使用说明

 

                   实验室安全无小事
  近年实验室安全事故频发,主要表现为:一,实验操作人员的安全意识欠缺;二,设备操作不规范;三,设备年久未有维护,线路老化;很多实验室实验人员安全意识不高,更有甚者在实验室设备内做火锅,各种化学试剂未有分区,杂物各种堆放,操作大都不看说明书,一般都是操作不了后,再查阅设备使用说明,很多设备多年都未曾使用,接着又开始使用等等。另外有些实验设备如,高压反应釜等因为实验涉及到安全,必须定期检查,实验前再次检测相关部件是否安全。因为科研迅速发展,各种不良价格低廉的实验设备流入各实验室,对安全造成一定的危险,像实验室高压反应器等设备一定选择专业厂商,选择有核心技术的厂商。
  
 
历年高校科研实验室安全事故一览:
2016年1月10日,化工大学科技楼实验室发生着火事件
2015年12月18日,清华大学何添楼实验室发生爆炸,一博士后人员死亡,推测原因为氢气瓶意外泄漏
2015年9月22日,大学化学楼一实验室起火,系学生做实验时,火焰枪与氢气管连接处脱落,氢气喷出后被引燃。
2015年4月5日,中国矿业大学(徐州)化工学院一实验室储气钢瓶爆炸,致1死5伤。
2014年12月4日,常州工程职业技术学院一实验室发生爆炸,系老师实验操作不当所致。
2014年3月18日,师范大学化学楼一实验室起火,系学生实验操作不慎引燃实验室
2013年4月30日,南京理工大学废弃实验室发生爆炸,4名施工人员被埋,1人身亡,原因为工人私拆金属
2011年,四川大学生化实验室突发火灾,液体爆炸形成流淌火
2010年 6 月3日下午,宁波大学曹光彪大楼一重点实验室发生大火。
2010年6月3日下午,安宁区培黎广场附近一栋二层楼上,一间私人开办的供附近大学学生进行实验操作的实验室由于学生操作不慎而导致石油醚爆炸燃烧,并引燃了与其相邻的仓库。
2009年 2月 27 日,中科院化学研究所一实验室起火,10余名保安因吸入有毒烟气中毒。
2008年 6月 6日,清华大学教学楼六楼化学实验室起火,楼内上百名师生被紧急疏散。 
2006年1月6日,位于磨子桥附近的成都科分院有机化学研究所一实验大楼发生火灾,继而引发连环爆炸,至少有4间实验室被烧毁。
 2005年 8月8号,首都师范大学化学系在实验楼二层的一个实验室在做实验时不慎引燃乙醚发生火灾,造成两人被烧伤。
2005年6月22晚上 ,苏州大学本部一化学实验室在学生做实验时突然起火,部分师生因此受伤。
2004年10月16日,长沙理工大学的实验室发生火灾,该实验室里的化学物品全部被烧毁,所幸隔壁其他实验室没有受到影响
2004年8月24日,中国科技大学的一间实验室突发大火,两间实验室中全是实验用的器材及化学试剂和液氯气罐等易爆品,大火烧掉了两间实验室及其中物品
2003年6月12日,化工大学一实验室突然发生猛烈爆炸,爆炸事故中共造成3名教师受伤
2003年5月31日,浙江中医学院实验楼发生火灾,随后发生轻微爆炸,实验室内堆放着乙醇、丙酮、食用醇等化学危险物品,周围其他实验室也有不少化学危险品,食用醇就有250kg左右,要是大火引爆这些化学危险品,后果相当严重
2003年1月19日,中山大学地球与环境科学学院实验室发生化学原料爆炸,该实验室堆放着很多研究用的化学原料,爆炸可能是因电线短路引起的
2002年9月24日,南京航空航天大学一栋理化实验室,由于一实验室在实验过程中操作不当引起火灾,造成整栋大楼烧毁,所幸的是没有造成人员伤亡
2001年11月20日,广东工业大学5号楼三楼化工研究所的一个化工实验室发生爆炸事故,造成二人重伤,三人轻伤,其中一人生命垂危。 
2001年5月20日,江苏省石油化工学院化工楼一实验室发生火灾,烧毁了该实验室全部设备